Positive solutions for nonlinear nonhomogeneous parametric Robin problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation of Positive Solutions for Nonlinear Nonhomogeneous Robin and Neumann Problems with Competing Nonlinearities

In this paper we deal with Robin and Neumann parametric elliptic equations driven by a nonhomogeneous differential operator and with a reaction that exhibits competing nonlinearities (concave-convex nonlinearities). For the Robin problem and without employing the Ambrosetti-Rabinowitz condition, we prove a bifurcation theorem for the positive solutions for small values of the parameter λ > 0. F...

متن کامل

Positive and Nodal Solutions for Parametric Nonlinear Robin Problems with Indefinite Potential

We consider a parametric nonlinear Robin problem driven by the p−Laplacian plus an indefinite potential and a Carathéodory reaction which is (p−1)− superlinear without satisfying the Ambrosetti Rabinowitz condition. We prove a bifurcation-type result describing the dependence of the set of positive solutions on the parameter. We also prove the existence of nodal solutions. Our proofs use tools ...

متن کامل

Nonlinear nonhomogeneous Robin problems with dependence on the gradient

*Correspondence: [email protected] 1Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland Full list of author information is available at the end of the article Abstract We consider a nonlinear elliptic equation driven by a nonhomogeneous partial differential operator with Robin boundary condition and a convection term. Using a topological approach base...

متن کامل

Bifurcation analysis for nonhomogeneous Robin problems with competing nonlinearities

Article history: Received 16 January 2014 Accepted 20 September 2014 Available online 22 October 2014 Submitted by Y. Wei MSC: 15A18 15A57

متن کامل

Multiple Positive Solutions for Nonlinear Fractional Boundary Value Problems

This paper is devoted to the existence of multiple positive solutions for fractional boundary value problem DC0+αu(t)=f(t, u(t), u'(t)), 0<t<1, u(1)=u'(1)=u''(0)=0, where 2<α≤3 is a real number, DC0+α is the Caputo fractional derivative, and f:[0,1]×[0, +∞)×R→[0, +∞) is continuous. Firstly, by constructing a special cone, applying Guo-Krasnoselskii's fixed point theorem and Leggett-Williams fix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum Mathematicum

سال: 2018

ISSN: 1435-5337,0933-7741

DOI: 10.1515/forum-2017-0124